US ERA ARCHIVE DOCUMENT



# Screening Chemicals in Commerce to Identify Possible Persistent and Bioaccumulative Chemicals: New Results and Future Work

Philip H. Howard<sup>1</sup>, William Meylan<sup>1</sup>, and Derek Muir<sup>2</sup>

 <sup>1</sup>Syracuse Research Corporation, Syracuse, NY
 <sup>2</sup>Environment Canada, Water Science and Technology Directorate, Burlington, ON

Email: howardp@syrres.com



### **Outline**



- The "existing chemical" universe
- Assessments/categorization of chemicals in commerce
- Selected chemicals with P, B and POP characteristics from a combined USEPA/Canadian DSL dataset
- Review of Low/Medium Production Chemicals and chemicals that are potential biomagnifiers in airbreathing organisms
- Toxicity Reviews
- Future Pollution Prevention Studies
- Future challenges



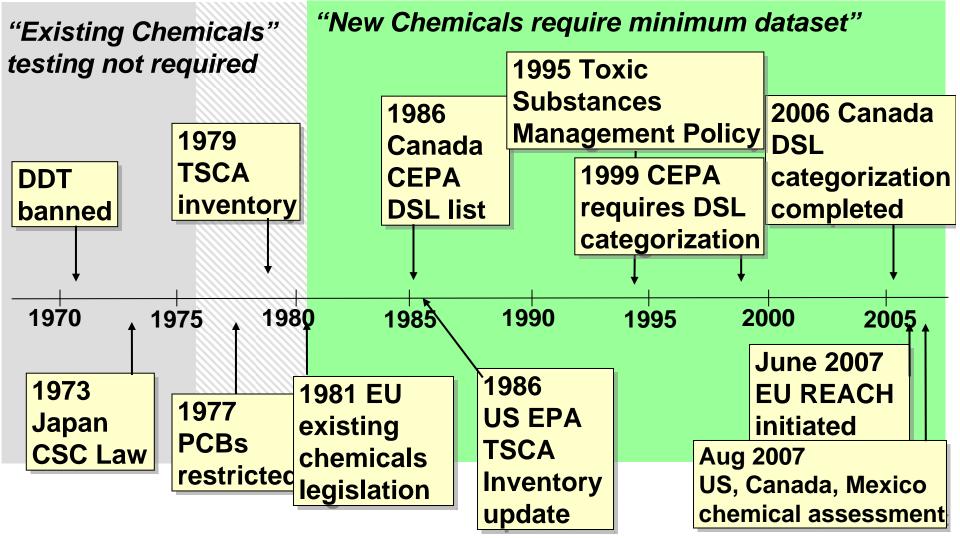
### The Universe of Chemicals



#### **Globally**

- With CAS numbers: **33,760,000** organic + inorganic substances (Feb/08)
- Commercially available: 19,184,000
- Inventoried/regulated chemicals: 246,000
- In commerce in USA, EU, Japan: ~100,000 with 30,000 > 1 t/yr
- Tracked by US EPA's Toxics Release Inventory: 650
- Routinely measured in environmental media: <1000</li>

#### In Canada


- Domestic Substances List (DSL): 24,700 (established in 1986)
- DSL & Non DSL: 70,000 substances (as of 2006)

#### In USA

• Toxic Substances Control Act (TSCA) and TSCA Inventory update: originally 62,000 (1976), now ~82,000 substances

US FDA 1970 1906 pesticides

### Regulating chemicals in commerce



~61,000 substances "grandfathered in"

~28,000 substances since 1976 or 1000 new substances per year



# Screening of existing chemical lists is widening the data available for identifying potential P,B & T substances



- TSCA Inventory Screening (US EPA)
  - Inventory Update Rule (IUR) lists chemicals >454 t (10,000 lbs)/yr
  - Updates 1986, 1990, 1994, 1998, 2002, 2006
  - 13,750 substances (all years)
- US EPA High Production Volume Challenge Program
  - 2800 chemicals
  - > 1,000,000 lbs/yr
- European "REACH" (Registration, Evaluation & Authorization)
  - Evaluation of ~5000 substances with production >100 t/yr
  - Registration of ~30,000 substances produced at >1 t/yr
  - Came into force June 2007



### **Environment Canada's Domestic Substances List Categorization**



- Mandated under CEPA 1999; completed September 2006
- 23,000 substances in production/use >100 kg/yr in 1986
- Screening of 11,300 organics with QSAR predicted properties
   + 1436 organics of unknown composition (UVCBs)
- Screening criteria: Persistent (P) or bioaccumulative (B), in accordance with Canadian P and B guidelines, and inherently toxic (iT) to humans or to non-human organisms, as determined by lab or other studies
- 4300 chemicals categorized for further assessment under the Chemicals Management Plan (CMP)



### **Goals of Our Study**



- Develop a North American rather than Canadian list of potentially PB&T chemicals
  - Greater relevance to the Great Lakes and trans-boundary long range transport than CMP priorities
- Using Quantitative Structure-Property relationships, and scientific judgment, identify <u>chemicals in commerce</u> that may be P and B and have not been previously measured in environmental media
- Assess whether selected chemicals can be analyzed by existing methods in use for POPs and new PB&T chemicals in the Great Lakes and the Arctic
- Analyze use and potential environmental release of new emerging contaminants
- Look for pollution prevention opportunities



# Development of a Combined Canadian and US database of chemicals in commerce (Howard and Meyland 2007)



| Source                                             |                                                | Reporting<br>threshold         | Reporting date                          |
|----------------------------------------------------|------------------------------------------------|--------------------------------|-----------------------------------------|
| US EPA High production volume (HPV) program*       | 3549                                           | 1,000,000 lbs/yr<br>(454 t/yr) | Post-1990                               |
| US EPA TSCA Inventory update rule (IUR) web site** | 14,458 organics<br>(combined HPV and<br>EHPVs) | >10,000 lbs/yr<br>(4540 kg/yr) | IUR reporting<br>years; 1986 to<br>2002 |
| Canadian DSL categorization***                     | 11,317 organics                                | >100 kg                        | Mid-1980s                               |
| UVCBs***                                           | 3059 organics                                  | >100 kg                        | Mid-1980s                               |
| (1400 on the DSL)                                  |                                                |                                |                                         |
| Total (after duplicates removed)                   | 22,043                                         |                                |                                         |

<sup>\*</sup>available from http://www.epa.gov/HPV/hpvchmlt.htm

<sup>\*\*</sup> available from http://www.epa.gov/oppt/iur

<sup>\*\*\*</sup> available from Environment Canada - http://www.ec.gc.ca/substances/

<sup>\*\*\*\*</sup> UVCB = Unknown, of Variable Composition, or of Biological Origin – organic chemicals



### Persistence and Bioaccumulation Characteristics of the 22,043 Chemicals Estimated Using EPI Suite Version 3.12



| Characteristics*                                                   | No.  | %    | Notes                                                                                             |
|--------------------------------------------------------------------|------|------|---------------------------------------------------------------------------------------------------|
| log K <sub>ow</sub> >5                                             | 4239 | 19%  | Indicates tendency to adsorb to sediments and to bioaccumulate                                    |
| BCF >2000                                                          | 924  | 4.6% | Bioaccumulation from water exposure                                                               |
| BCF >5000                                                          | 566  | 2.8% | <ul> <li>does not include biomagnification</li> </ul>                                             |
| BCF >50,000                                                        | 19   | 0.1% |                                                                                                   |
| AO* half-life >2 days                                              | 1973 | 10%  | AO half-life indicates stability to                                                               |
| AO half-life >10 days                                              | 840  | 4%   | atmospheric oxidation and potential long range transport                                          |
| log K <sub>aw</sub> >-5 <u>and</u> log K <sub>aw</sub> <-1         | 6515 | 32%  | $K_{aw}$ describes air-water partitioning. Compounds with log $K_{aw} > -5 \& < -1$ are "hoppers" |
| log K <sub>ow</sub> ~2-5 <u>and</u> high log K <sub>oa</sub> ~6-12 | 2000 | 10%  | Biomagnification in air-breathing organisms (Kelley et al. 2007)                                  |

\*K<sub>ow</sub> = octanol water partition coefficient

BCF = bioconcentration factor predicted with EPIsuite software

AO= atmospheric oxidation half-life

K<sub>aw</sub> = air-water partition coefficient



### Further Prioritization Based on Lessons Learned from POPs in the Great Lakes and in the Arctic



- 1. High bioaccumulation/biomagnification potential, i.e., in top predators
- 2. Persistence sequestered in bottom sediments in the open lakes implying a low rate of biodegradation
- 3. Long range transport potential i.e., found in mid-lake, in Lake Superior and remote lakes such as Siskiwit Lake
- 4. Quantity in use and potential for emissions i.e., open use or as an additive vs. as a chemical intermediate

| Selection Characteristics                                                         | #   | Notes                                                                                                                                                 |
|-----------------------------------------------------------------------------------|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------|
| Predicted BCF > 1000,                                                             | 105 | Using EPIsuite. Mainly chemicals with                                                                                                                 |
| Atmospheric Oxidation >1 day, and Log Kaw >-5 and <-1                             |     | LRT potential                                                                                                                                         |
| By chemical class (Br, Cl, F, I, Si, cyclic HCs) and considering biodegradability | 324 | By expert judgment – includes chemicals and their degradation products with low LRT but potential for persisting in sediments and in the water column |
| Total                                                                             | 429 | 70% halogenated; 10% siloxanes                                                                                                                        |



# Information on Measurement and Analyzability of the 429 Substances



| Analysable | Well monitored in<br>the GL region and<br>Arctic (i.e.,<br>programs such as<br>IADN, NCP) | Chemicals that may have been analysed in any GL & Arctic measurement studies | Analyzable using existing methods for neutral POPs or other neutrals such as pesticides | Analyzable by<br>LC-MS/MS ESI<br>mode (anionic)<br>or positive CI<br>mode |
|------------|-------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|---------------------------------------------------------------------------|
| Yes        | 16                                                                                        | 83                                                                           | 280                                                                                     | 46                                                                        |
| % Yes      | 4%                                                                                        | 19%                                                                          | 65%                                                                                     | 11%                                                                       |
| No         | 413                                                                                       | 346                                                                          | 116                                                                                     |                                                                           |
| Maybe      |                                                                                           |                                                                              | 33                                                                                      | 11                                                                        |



# Further Prioritization of Low-Medium Production Volume and Potential Biomagnifiers in Air-Breathing Organisms



- Low-Medium Production Volume
  - Low: 10,000-500,000 lbs/yr
  - Medium: 500,000-1,000,000 lbs/yr
  - Total of low and medium = 9378 chemicals
    - » Scientific judgment screening = 270 chemicals
- Biomagnifiers in Air-Breathing Organisms
  - Low  $K_{ow} = \sim 2-5$  and Log  $K_{oa}$  6-12 = 2000 chemicals » Scientific judgment screening = 95 chemicals
- Total Chemicals (429 +184) 613
  - 62% are halogenated,
  - 27% are hydrocarbons or N or S containing HCs
  - 8% are siloxanes
  - 3% are P containing.

# Some Semi-Volatile, Medium or High Production, Chlorinated or Fluorinated Organics of Potential Interest Due to (1) Predicted Persistence and/or Bioaccumulation and (2) Ease of Analysis

| Substances                                         | Predicted properties                      | Prod'n/yr<br>(USA, Ibs) | Structure                             | Notes                                                               |
|----------------------------------------------------|-------------------------------------------|-------------------------|---------------------------------------|---------------------------------------------------------------------|
| 1,2-dichloro-4-<br>(trifluoromethyl)-<br>benzene   | $Log K_{ow} = 4.2$<br>$AOt_{1/2} > 100 d$ | 1-10 M<br>(2002)        | CI F                                  | Very P, highly volatile.<br>Intermediate in pesticide<br>production |
| Trifluoropropyl methyl cyclotetrasiloxane          | Log Kow = 10.7  AOt1/2 >?                 | 0.5-1.0 M<br>(2002)     | F F F F F F F F F F F F F F F F F F F | P, low predicted BCF                                                |
| Perfluoroperhydro-<br>phenanthrene                 | Log Kow = 9.6 AOt1/2 = ?                  | 0.010-0.5 M<br>(2002)   | F F F F F                             | Looks very P and B                                                  |
| Tetrafluorobromo-<br>benzene                       | $Log K_{ow} = 3.9$<br>$AOt_{1/2} = 85 d$  | 0.010-0.5 M<br>(1998)   | F Br                                  | Looks P and B                                                       |
| Cyclohexane-<br>sulfonyl fluoride<br>and sulfonate | $Log K_{ow} = 5.9$<br>$AOt_{1/2} = 77 d$  | 0.010-0.5 M<br>(2002)   | F F F F F F F F F F F F F F F F F F F | P and possibly B as sulfonate deg'n product                         |

### Some Brominated Organics of Potential Interest Due to Production Volume, High Predicted P & B and Ease of Analysis

| Substances                                   | Predicted properties                                    | Prod'n/yr (USA,<br>lbs and last year<br>rep'd | Structure                                      |
|----------------------------------------------|---------------------------------------------------------|-----------------------------------------------|------------------------------------------------|
| Tetrabromo-dichloro-<br>cyclohexane          | Log K <sub>ow</sub> = 4.6<br>P & B                      | >10-500 k<br>(1998)                           | CI<br>CI<br>Br<br>Br                           |
| Pentabromo-6-chloro-<br>cyclohexane          | Log K <sub>ow</sub> = 4.7<br>P & B                      | >10-500 K<br>(2002)                           | Cl<br>Br<br>Br<br>Br                           |
| 1,3,6,8- tetrabromopyrene                    | Log K <sub>ow</sub> = 8.5<br>Persistent<br>May not be B | >0.5-1M<br>(2002)                             | Br Br Br                                       |
| Octabromo-1,1,3-<br>trimethyl-3-phenyl indan | Log K <sub>ow</sub> ~10<br>P & B                        | >0.5–1 M (2002)                               | Br Br Br Br CH <sub>3</sub> CH <sub>3</sub> Br |
| 1,2-dibromo-4-(1,2-dibromoethyl)cyclohexane  | Log K <sub>ow</sub> = 5.2<br>P & B                      | >10-500 K<br>(2002)                           | Br Br                                          |



## Toxicity Estimates of Priority Chemicals



- 429 chemicals in commerce previously identified as having potential for persistence and bioaccumulation in the Great Lakes
- Further evaluated to identify and estimate whether these compounds are toxic to aquatic organisms and to mammals utilizing:
  - Analog Identification Methodology (AIM)
  - ECOSAR
  - OncoLogic





- EPA is currently developing the AIM tool to identify close analogs that have measured data
- Designed to help identify publicly available, experimental toxicity data on closely related chemical structures
- AIM database contains 31,031 potential analogs with publicly available toxicity data
- Experimental data sources Indexed
  - On-Line Databases
    - » TSCATS, HSDB, IRIS
  - U.S. Government Documents
    - » NTP, ATSDR, HPV Challenge Program
  - Other Sources
    - » DSSTox, RTECS, IUCLID, AEGLS



### **AIM Results**



- The AIM tool was run to identify if a chemical is in one of the approximately 45 EPA Chemical Classes used by the New Chemicals Program under TSCA
  - These 45 chemical classes have been identified as being of potential concern for human health effects
- 277 chemicals were included in the 45 chemical classes
- 152 chemicals were not in the 45 chemical classes



### **ECOSAR**



- ECOSAR is a computerized program for aquatic toxicity estimates that is currently used by EPA's Office of Pollution Prevention and Toxics (OPPT)
- Part of the EPISuite<sup>™</sup> software provides estimates of potential for aquatic toxicity based up K<sub>ow</sub> and chemical class
- To date, over 150 SARs have been developed for more than 50 chemical classes
- This analysis involves the application of SARs (Structure Activity Relationships) to predict the aquatic toxicity of chemicals ( $LC_{50}$ ,  $EC_{50}$ , chronic, etc.) for various aquatic organisms (fish, daphnid, algae, etc.)



#### **ECOSAR** Results



- The most toxic value (i.e., lowest  $LC_{50}$ ) for each chemical was selected as is done with the New Chemicals Program under TSCA and by Environment Canada
- Value was given for 349 out of 429 chemicals
  - Chemicals were excluded when it was predicted that the chemical may not be soluble enough to meet the predicted toxic effect (i.e., LC<sub>50</sub>)



### **OncoLogic**



- The OncoLogic program was run on each chemical that a structure was available for in the program
- The program assigns a baseline concern level from high to low for a chemical to have the potential to cause cancer
- The chemical analog structure activity method was used with some standard exposure scenarios selected



### **OncoLogic Results**



- OncoLogic
  - 146 chemicals were successfully run

```
 High = 0
```

- » High-Moderate = 10
- » Moderate = 24
- » Low-Moderate = 34
- » Marginal = 29
- > Low = 49

• 32 chemicals had pre-existing cancer screening (i.e., IARC, NTP, etc.)



## Fate, Transport and Exposure Potential



- Divide Priority Chemicals into Chemical or Use Classes
  - e.g., Chemical classes Fluorinated, Brominated, Chlorinated, Siloxanes,
  - e.g., Fragrances, rubber chemicals, solvents, chemical intermediates, flame retardants
- High release plasticizers, hydraulic fluids, or solvents, fire fighting surfactants, fragrances
- Degraded during use antioxidants, vulcanizing agents, UV stabilizers, polymer initiators
- Stable during use auto wax, defoaming agents, soil repellant
- Analyze Physical Properties, Binding, Release
  - Collect from PHYSPROP or Estimate with EPI Suite
  - Determine if chemically bound (reactive flame retardants vs. non-reactive)
  - Integrate physical properties & form during chemical use to assess release (use past examples of chemical release of know contaminants)



### **Pollution Prevention**



- Need Variety of Approaches Dependent Upon the Use and Chemical Properties Required for the Application
  - —Synthetic intermediate: develop different synthetic route
  - Solvent: examine physical properties (vapor pressure, solubility for application)
  - Surfactant: same surfactant properties but more biodegradable
  - —Flame retardant: possibly use phosphate to quench flame rather than halogens
  - General: structurally redesign molecule to make less persistent (less fully halogenated, linear alkyl chains – more biodegradable) but keep essential properties for use



### The Emerging Challenge



Confirming SAR predictions with environmental measurements for priority PB&T chemicals

Instrument technology High resolution separations & mass measurement 2D-GC-TOF, LC-MS/MS and LC-QTOF



- new or refinements of existing extraction and isolation procedures
- analytical standards and reference materials

Contaminant free reagents Clean room isolation

Bioanalytical Methods and directed bioassays

"in silico" technology – computational toxicology Improved QSARs to identify P,B&T parent and metabolites

e.g., metabolites via TIMES (tissue metabolism simulator), CATABOL, BIOWIN



### **Challenges and Opportunities**



- Our screening of 000s of substances e.g., DSL and TSCA Inventory has yielded some interesting probable P&B substances
- Uncertainties in this type of screening include:
  - Possibility of false positives and false negatives
  - Lack of information on uses and actual emissions of the chemicals
  - Need for information on degradation products
- Lack of information on biological effects of the selected chemicals
- Numerous opportunities for both environmental chemists and environmental toxicologists
  - Analytical and bioanalytical methodologies
  - Exposure and risk assessment
  - SAR development
  - Chemical fate modeling



### **Acknowledgements**



- Funding sources
  - US EPA Great Lakes National Program Office (GLNPO)
  - Environment Canada Great Lakes 2020 program for funding
- Acknowledgements
  - Ted Smith, US EPA, Great Lakes National Program Office, Chicago
  - Derek Muir, Environment Canada, Water Science and Technology Directorate, Burlington, ON